Engineering, procurement, and construction (EPC) companies – who plan and execute complex, large-scale infrastructure projects – operate in a highly competitive and challenging business landscape. In order to deliver projects of the highest quality – on time and within budget – for customers and to win new contracts, EPC companies must be able to maximize their operational efficiency.
Kvaerner – a leading global provider of EPC services for the oil and gas and renewable energy industries, which specializes in delivering advanced offshore platforms, onshore plants, floating production units (FPSOs), and renewable energy solutions – is constantly looking for opportunities to improve the efficiency of its project planning and execution process.
One technical function that was identified as an area for possible improvement is scaffolding modeling. The process of designing and building a scaffolding model – which is carried out by specialized engineers – is a critical part of Kvaerner’s entire project planning and execution framework.
As a typical project requires several hundred tons of scaffolding, having a scaffolding model before construction can significantly reduce construction times and costs. The actual process of creating a scaffolding model, however, can be a complicated and timeconsuming endeavor.
Around two years ago, Kvaerner looked at its scaffolding modeling process and saw that there was room for improvement. Kvaerner’s digitalization program was enlisted to implement an automated, 3D scaffolding modeling tool to boost the efficiency of the process and the quality of the scaffolding models.
This automated, 3D scaffolding modeling tool gives scaffolding engineers a detailed drawing showing exactly how the finished scaffolding will look and enables them to precisely calculate:
But Kvaerner’s Technology & Digitalization team did not merely want to be able to create just any 3D scaffolding model – they wanted to be able to rapidly and automatically generate an optimal one. To achieve this, they decided to use mathematical optimization.
A key component of Kvaerner’s automated, 3D scaffolding modeling tool is a mathematical optimization application, which is powered by the Gurobi Optimizer.This mathematical optimization application – which is embedded in Kvaerner’s automated, 3D scaffolding modeling tool – gives the company’s scaffolding engineers the capability to automatically generate optimal scaffolding models that improve access and minimize construction times and costs. A key component of Kvaerner’s automated, 3D scaffolding modeling tool is a mathematical optimization application, which is powered by the Gurobi Optimizer. This application enables Kvaerner’s scaffolding engineers to easily and effectively design optimal scaffolding models, which are then used to guide the construction of the actual scaffolding for the offshore platform, onshore process plant, or other structure.
With mathematical optimization, Kvaerner’s scaffolding engineers can:
This mathematical optimization application – which is embedded in Kvaerner’s automated, 3D scaffolding modeling tool – gives the company’s scaffolding engineers the capability to automatically generate optimal scaffolding models that improve access and minimize construction times and costs.
GUROBI NEWSLETTER
Latest news and releases
Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.
Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.